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ABSTRACT

Given a foreground galaxy-density field or shear field, its cross-correlation with the shear field from
a background population of source galaxies scales with the source redshift in a way that is specific
to lensing. Such a source-scaling can be exploited to effectively measure geometrical distances as a
function of redshift and thereby constrain dark energy properties, free of any assumptions about the
galaxy-mass/mass power spectrum (its shape, amplitude or growth). Such a geometrical method can

yield a ∼ 0.03 − 0.07f
−1/2
sky measurement on the dark energy abundance and equation of state, for a

photometric redshift accuracy of ∆z ∼ 0.01−0.05 and a survey with median redshift of ∼ 1. While these
constraints are weaker than conventional weak lensing methods, they provide an important consistency
check because the geometrical method carries less theoretical baggage: there is no need to assume any
structure formation model (e.g. CDM). The geometrical method is at the most conservative end of a
whole spectrum of methods which obtain smaller errorbars by making more restrictive assumptions –
we discuss some examples. Our geometrical approach differs from previous investigations along similar
lines in three respects. First, the source-scaling we propose to use is less demanding on the photometric
redshift accuracy. Second, the scaling works for both galaxy-shear and shear-shear correlations. Third,
we find that previous studies underestimate the statistical errors associated with similar geometrical
methods, the origin of which is discussed.

Subject headings: cosmology: theory — gravitational lensing — large-scale structure of universe —
galaxies: halos — galaxies: structure

1. INTRODUCTION

Weak gravitational lensing has emerged to become an
important probe of cosmology (e.g. Wittman et al. 2000,
van Waerbeke et al. 2000, Bacon et al. 2000, Kaiser,
Wilson, & Luppino 2000, Maoli et al. 2001, Rhodes et
al. 2001, Hoekstra, Yee, & Gladders 2002, Jarvis et al.
2003, Pen et al. 2003; see review by Bartelmann & Schnei-
der 2001). Much of the current discussion on potential
dark energy constraints from weak lensing has focused
on the use of the shear/convergence power spectrum, or
equivalent measures, as a function of source redshift (e.g.
Hu 2002, Abazajian & Dodelson 2003, Benabed & van
Waerbeke 2003 but see e.g. Hui 1999, van Waerbeke et al.
2001, Benabed & Bernardeau 2001, Huterer 2002, Mun-
shi & Wang 2003, Refregier et al. 2003, Takada & Jain
2003 for dark energy constraints from skewness or bispec-
trum). In these types of investigations, information about
dark energy (both its abundance and equation of state) is
encoded in the combination of geometrical distances and
fluctuation growth rate that determines the observed lens-
ing power spectrum. In this paper, we would like to pose
and answer the question: is it possible to separate out the
information purely from geometry i.e. irrespective of de-
tails of the mass power spectrum and its growth ? Such
an exercise is useful because a method to do so allows us
to derive dark energy constraints without making assump-
tions about the underlying large scale structure model (e.g.
Cold Dark Matter, Gaussian initial conditions, etc). Com-
paring lensing constraints obtained via such a geometrical
method against lensing constraints that carry more theo-
retical baggage provides an important consistency check.

Moreover, a geometrical method allows us to make use
of lensing measurements on small scales, scales which are
often ignored in conventional methods because of worries
about the ability to predict the nonlinear power spectrum
accurately.

Our discussion is divided as follows. In §2, we point out
an interesting scaling of lensing signals (i.e. shear-shear
and galaxy-shear power spectra) with the source distance.
Such a scaling can be used to obtain essentially an es-
timate of angular diameter distance (or more precisely,
combinations of angular diameter distances) as a function
of source redshift, without making any assumptions about
the mass/galaxy power spectrum. We contrast this scal-
ing with a different interesting scaling investigated by Jain
& Taylor (2003), especially in terms of the demand on
photometric redshift accuracy. The scaling we focus on
can be applied to both galaxy-shear and shear-shear data,
whereas the scaling of Jain & Taylor applies only to galaxy-
shear. To understand what kind of constraints one could
obtain about dark energy from our geometrical method,
we perform a Fisher matrix analysis in §3. The conclu-
sions are summarized in Fig. 1 and 2. The geometrical
method above is a very conservative one: it makes ab-
solutely no assumptions about the underlying large scale
structure and its evolution. In §4 we investigate a method
at the other end of the spectrum: it assumes the shape
of the mass/galaxy power spectrum is known. It differs
from more conventional methods (such as lensing tomog-
raphy of Hu 2002, Abazajian & Dodelson 2003) only in
that the geometrical information and growth rate infor-
mation are separated to provide a consistency check. In
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practice, there is of course a whole continuum of meth-
ods to obtain dark energy constraints from lensing data,
varying from the most conservative (like the geometrical
method emphasized here) to ones that make strong large
scale structure assumptions. We conclude in §5.

A word on the history of this project is in order. When
we started, our initial focus was on shear-shear correla-
tion. Since then, an elegant paper by Jain and Taylor
(2003, JT03 hereafter) appeared which addressed similar
issues, but using the galaxy-shear correlation (see also in-
teresting developments in Bernstein & Jain 2003 [BJ03]).
Therefore we decide to include both in our discussion here.
While our results are in qualitative agreement, we find
quantitative differences. In particular we find dark en-
ergy constraints that are weaker than JT03. As we will
explain in detail later, it is not a priori obvious whose
constraints should be stronger. This is because we focus
on a source-scaling of lensing signals that is different from
JT03. Our scaling is less demanding on the photometric
redshift accuracy and can be applied to both galaxy-shear
and shear-shear correlation data, but introduces more free
parameters. However, even if we employ exactly the same
scaling adopted by JT03, we find statistical errors that are
larger than JT03, the origin of which is discussed in detail
in Appendix A. Related issues are discussed by Song &
Knox (2003) and Hu & Jain (2003).

A word on terminology. JT03 used the term cross-
correlation tomography to describe their method. This
term can also be used to refer to the technique of cross-
correlating shear/galaxy-density fields from different red-
shifts in general (e.g. Takada & White 2003). What we
would like to focus on, as in the case of JT03, is the
use of the cross-correlation technique to extract cosmo-
logical constraints that are purely geometrical in origin.
To avoid confusion, we will generally not use the term
cross-correlation tomography. We will simply refer to our
approach as a geometrical method. To distinguish the
source-scaling we exploit from the one used by JT03, we
refer to ours as the offset-linear scaling (as opposed to the
linear scaling adopted by JT03). The difference between
these two scalings will be explained in the next section.

In the bulk of this paper, the term shear is loosely used
to refer to its scalar part (i.e. the convergence). For sim-
plicity, most of our expressions focus on correlations in-
volving the convergence, and they assume a flat universe.
Expressions for the more directly observable components
of shear and for a non-flat universe are given in Appendix
B.

2. A USEFUL SCALING OF LENSING SIGNALS WITH
SOURCE DISTANCE

Here we consider several redshift distributions of galax-
ies some of which are considered foreground distribution
(labeled by f) and other considered background galaxies
(labeled by b). The idea being that the background galax-
ies are behind the foreground galaxies. One measures the
lensing shear field of the different background galaxy pop-
ulations and correlates it with either the shear field or
the surface number density fluctuations of the foreground
galaxies. By determining how these correlations scale with
the redshift distribution of the background galaxies we
hope to learn about the cosmology in a way which is in-
dependent of assumptions about inhomogeneities in the

universe and depends only on the overall geometry.
It will be important that the foreground galaxies are in-

deed in front of the background galaxies and hence that
they do not overlap in redshift with the background galax-
ies. 1 One can measure precisely using spectroscopy or
estimate approximately using multi-color photometry the
redshift distribution of the different populations. With
spectroscopic redshifts it is a simple matter to assure that
the foreground distribution and the background distribu-
tion overlap very little while with photometric redshifts
this requires more care. In §3 below we will show how
a small contamination of background galaxies in front of
foreground galaxies affects the results.

In this paper we find it more useful to express everything
in terms of comoving distance from the observer, χ, rather
than redshift z. Of course, observationally one measures
z and can only infer exact values of χ once one assumes
a cosmology, which then gives you the function χ(z). The
idea is to find cosmological parameters that give distances
which best match the observed lensing correlations. Of
crucial importance will be the z-distributions of galaxy
populations, dN(z)/dz, but below we will use the distance
distribution

W (χ(z)) ≡
dN(z)

dz
dχ(z)

dz

∫
∞

0 dz′ dN(z′)
dz′

(1)

so that
∫

dχ W (χ) = 1. We will add a f or b subscript to
W for foreground or background populations, respectively.
Other cosmological quantities we will use are the scale fac-
tor a(χ) defined by a(χ(z)) = 1/(1 + z), the Hubble pa-
rameter H(χ) = −ca′(χ)/a(χ)2, and Ωm0 is the present
density of matter (dark + baryonic) in units of the critical
density. We define H0 ≡ H(0) and c is the speed of light.

For simplicity we assume a flat universe in the bulk of
the paper. All expressions, in particular the scaling of
interest, can be generalized to a non-flat universe as dis-
cussed in Appendix B. Also, the expressions in the bulk
of the paper are given in Fourier space. The real space
counterparts are discussed in Appendix B as well.

We are interested in 2 kinds of correlations. One is cor-
relating the background shear (γ) field with the foreground
galaxy density field, and the other is with some foreground
γ field. The first is usually referred to as galaxy-galaxy
lensing and the second is known as shear-shear correla-
tion. In both cases the shear that is correlated is only the
scalar (a.k.a. G-mode or E-mode) component of the shear
pattern 2 (see Stebbins 1996). Unless otherwise stated, we
will use γ to refer to this scalar part: the convergence. Us-
ing a Limber approximation for small angles (large ℓ) the
resulting angular cross power spectra, Pgγ(ℓ) and Pγγ(ℓ)
can be written as (Blandford et al. 1991, Miralda-Escude
1991, Kaiser 1992, Jain & Seljak 1997)

Pgγ(ℓ; f, b) =
3Ωm0H

2
0

2c2

∫
dχf

a(χf)
Wf (χf)

∫
dχbWb(χb)

1However, it is completely unimportant whether different back-
ground (or foreground) populations overlap, or even whether they
contain common members.

2Also known as “electric-”, or “gradient-” component. This ex-
cludes the other component, known as “curl-”, “C-”, “magnetic-”,
“B-’, or pseudoscalar- component, which will have a much smaller
signal and less useful information for our purposes.



3

×
χb − χf

χbχf
Pgδ(

ℓ

χf
, χf)Θ(χb − χf) (2)

and

Pγγ(ℓ; f ; b) =

(
3Ωm0H

2
0

2c2

)2

(3)

×

∫
dχfWf (χf)

∫
dχbWb(χb)

×

∫
dχ

a(χ)2
χb − χ

χb

χf − χ

χf
Pδδ(

ℓ

χ
, χ)Θ(χb − χ)Θ(χf − χ).

Here Θ(χb − χ) is the Lorentz-Heaviside function which
is unity if χ < χb, and zero otherwise. Also Pgδ(k, χ)
and Pδδ(k, χ) are respectively the 3-d galaxy-mass power
spectrum and 3-d mass power spectrum, both evaluated
at 3-d wavenumber k and at a time corresponding to dis-
tance χ, and ℓ is the angular wavenumber. As always with
the Limber approximation there is a one-to-one correspon-
dence with the 3-d wavenumber and angular wavenumber
at a given distance χ: k ↔ ℓ

χ .

2.1. Offset-Linear Scaling

The key step for the purpose of this paper is to note
that if the foreground distribution Wf and the background
distribution Wb overlap very little then it is an excellent
approximation to make the substitution

Wf (χf)Wb(χb)Θ(χb − χf) → Wf (χf)Wb(χb) (4)

in eq. [2], or

Wf (χf)Wb(χb)Θ(χb − χ)Θ(χf − χ) (5)

→ Wf (χf)Wb(χb)Θ(χf − χ).

in eq.[3]. Under this approximation the angular power
spectrum will exhibit an offset-linear scaling:

Pgγ(ℓ; f, b) ≈ F (ℓ; f) + G(ℓ; f)/χeff(b) (6)

Pγγ(ℓ; f, b) ≈ A(ℓ; f) + B(ℓ; f)/χeff(b)

where

1

χeff(b)
≡

∫
dχbWb(χb)

1

χb
(7)

and

F (ℓ; f) ≡
3Ωm0H

2
0

2c2

∫
dχf

a(χf)

Wf (χf)

χf
Pgδ(

ℓ

χf
, χf) (8)

G(ℓ; f) ≡ −
3Ωm0H

2
0

2c2

∫
dχf

a(χf)
Wf (χf)Pgδ(

ℓ

χf
, χf)

A(ℓ; f) ≡

(
3Ωm0H

2
0

2c2

)2 ∫
dχf Wf (χf)

×

∫ χf

0

dχ

a(χ)2
χf − χ

χf
Pδδ(

ℓ

χ
, χ)

B(ℓ; f) ≡ −

(
3Ωm0H

2
0

2c2

)2 ∫
dχf Wf (χf)

×

∫ χf

0

dχ

a(χ)2
χf − χ

χf
χ Pδδ(

ℓ

χ
, χ)

This is the scaling we wish to exploit: for a fixed fore-
ground population, Wf , as one varies the background red-
shift distribution Wb, the lensing power spectra Pgγ and
Pγγ scale in a definite manner, namely linearly through the
factor 1/χeff(b) but with an offset given by F or A (hence
the name offset-linear scaling). This should be contrasted
with the linear scaling described below. Moreover, this fac-
tor 1/χeff(b) is purely geometrical. It is the inverse source
distance averaged over the background redshift distribu-
tion (eq. [7]). It is important to emphasize that eq. [6]
holds even if Wf and Wb are broad distributions – the
only requirement is that they have little overlap. We will
discuss what requirement this places on the photometric
redshift accuracy in §3.

Such a scaling is very useful in confirming the lensing
hypothesis of the observed correlation i.e. intrinsic align-
ment is not expected to produce this kind of scaling. This
fact can be exploited to weed out contamination of the
observed signals from intrinsic alignment, which will be
further explored in a future paper.

A more ambitious goal is to use this scaling to effectively
measure the angular diameter distance as a function of
redshift (more precisely, measure χeff(b) as a function of
distribution Wb), and use this to constrain cosmological
parameters, especially those pertaining to dark energy, in
a way independent of assumptions about the large scale
structure of galaxy and mass. This is the topic of §3.

2.2. Comparison with Linear Scaling

At this point, it is useful to compare the scaling dis-
played in eq. [6] with the scaling used by JT03. Unlike
offset-linear scaling, the JT03 scaling can only be applied
to Pgγ , i.e. to galaxy-galaxy lensing. JT03 assumed Wf is
well approximated by a delta function at a distance, χ̂f , in
which case G(ℓ; f) = −χ̂f F (ℓ; f) and Pgγ follows a scaling
that is even simpler than in eq. [6] (although eq. [6] still
holds) i.e. a linear scaling with no offset:

Pgγ(ℓ; f, b) ≈ F (ℓ; f)

(
1 −

χ̂f

χeff(b)

)
(9)

Note that all of the uncertainties associated with large
scale structure come in the prefactor F (ℓ; f). Here the
background distribution, Wb, does not have to be well ap-
proximated by a δ-function, only the foreground distribu-
tion, Wf , does. One also requires that Wb not extend
significantly into the foreground just as with the offset-
linear scaling. For a fixed foreground redshift, varying the
background distribution produces a definite linear scal-
ing (with no offset) of Pgγ with the geometrical factor
1 − χ̂f/χeff(b). JT03 proposed that one can examine the
ratio of Pgγ ’s measured using two different background
distributions (Wb and Wb′ ) but the same foreground: 3

Pgγ(ℓ; f, b)

Pgγ(ℓ; f, b′)
≈

χ̂−1
f − χeff(b)−1

χ̂−1
f − χeff(b′)−1

. (10)

One can infer values for cosmological parameters with this
equation by measuring the left-hand-side and then find-
ing the parameters for which the right-hand-side yield the
same values.

3We have paraphrased JT03 a little bit here. They considered the
ratio of correlations measured in real space instead of Fourier space.
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2.3. The Foreground Width Systematic

In practice the foreground galaxies will not have zero un-
certainty in distance, and unless one has spectroscopic red-
shifts for the foreground galaxies (e.g. McKay et al. 2001,
Sheldon et al. 2003), Wf will have some non-negligible
spread. Such a spread implies the ratio of the observed
Pgγ ’s will differ from the idealized limit of eq. [10] which
can lead to systematic errors in estimates of cosmological
parameters, e.g. the dark energy equation of state, w, if
one uses the linear scaling but not if one uses the offset-
linear scaling.

If the foreground distribution Wf is not a delta function,
eq.s [9,10] should be replaced by:

Pgγ(ℓ; f, b) ≈ F (ℓ; f)

(
1 −

χ̃f

χeff(b)

)
(11)

Pgγ(ℓ; f, b)

Pgγ(ℓ; f, b′)
≈

χ̃f (ℓ)−1 − χeff(b)−1

χ̃f (ℓ)−1 − χeff(b′)−1
(12)

where χ̃f (ℓ) ≡ −G(ℓ; f)/F (ℓ; f). While eq.s [10,12] are
similar in form the right-hand-side of the latter is ℓ depen-
dent and depends on non-measured and non-geometrical
quantities like the galaxy-mass power spectrum Pgδ(k, χ).

To bring the non-geometrical character of eq. [12] into
better focus, let us perform an expansion of χ̃f around
the mean distance χ̄f ≡

∫
dχfWf (χf)χf i.e. χ̃f =

χ̄f + ∆χf(2) + ∆χf(3) + . . . where ∆χf(n) is order n in
the width of Wf (the 1st order term is zero). The lowest
order correction is

∆χf(2)(ℓ) = −
σ2

χ

χ̄f
× (13)

(
1 −

af χ̄f Hf

c
+ nf (ℓ) +

2 afHf χ̄f Υf(ℓ)

c

)

where σχ is the width of Wf i.e. σ2
χ ≡

∫
dχfWf (χf)(χf −

χ̄f )2, af ≡ a(χ̄f ), Hf ≡ H(χ̄f ) is the Hubble constant at
the time corresponding to χ̄f ,

nf (ℓ) ≡
dlnPgδ(k, χ̄f )

dlnk

∣∣∣∣
k= ℓ

χ̄f

(14)

is the spectral index evaluated at that foreground redshift,
and

Υf(ℓ) ≡
1

2

dlnPgδ(
ℓ

χ̄f
, χ)

dlna(χ)

∣∣∣∣∣
χ=χ̄f

(15)

tells us about the growth of correlations with time.
The terms nf (ℓ) and Υf (ℓ) in ∆χf(2)(ℓ) clearly depend

on a non-geometrical quantity, namely the 3-d galaxy-mass
power spectrum Pgδ(k, χ̄f ). One can imagine improving
upon the JT03 procedure by accounting for corrections
due to such terms when fitting the ratio of lensing cor-
relations for dark energy parameters (eq. [12]). This
somewhat compromises the original goal of isolating the
purely geometrical information. A more serious problem
is that a quantity like Υf(ℓ), which is the growth rate of
the galaxy-mass correlation, is fundamentally rather un-
certain because of the uncertain relation between galaxy

and mass. Conservatively, this leads to an order σ2
χ/χ̄f

uncertainty in any estimate of the correction ∆χf(2)(ℓ).
In other words, as long as the foreground distribution

Wf has a finite width, the ratio of correlations considered
by JT03 does not give eq. (10), but instead gives eq. (12),
where χ̃f = χ̄f + O(σ2

χ/χf ) and the correction O(σ2
χ/χf)

is uncertain. Attempts to make use of the JT03 linear scal-
ing to infer dark energy constraints is therefore subject to
a systematic error that depends on the width of Wf . Fol-
lowing JT03, consider using a foreground distribution by
taking a photometric redshift bin centered at for instance
zp = 0.3, with a top-hat width of ∆zp = 0.1. To obtain
the actual distribution Wf of true redshifts, one has to
convolve such a top-hat photometric redshift bin with the
photometric redshift error distribution, which we model as
a Gaussian of dispersion σz (this is described more fully
in §3). We find that the JT03 method (eq. [12]) is sus-
ceptible to a systematic error of ∼ 30%, 5% or 1% on
the dark energy equation of state w, for σz = 0.05, 0.02
or 0.01 respectively. The JT03 linear scaling is therefore
quite demanding on the photometric redshift accuracy if
one would like to keep the systematic error below say 1%.
Unless spectroscopic redshifts are available, we think it is
more productive to make use of the offset-linear scaling
which makes no assumptions about the width of Wf and
can be applied to both pure lensing data and galaxy-galaxy
lensing.

2.4. The Ratio of Power Spectrum Differences

For a zero width foreground galaxy distribution linear
scaling means the ratio of the power spectrum leads to a
purely geometric expression (eq. [10]), while more gener-
ally with offset-linear scaling it is the ratio of difference of
power spectra which is purely geometrical:

P (ℓ; f, b) − P (ℓ; f, b′)

P (ℓ; f, b′′) − P (ℓ; f, b′′′)
=

χeff(b)−1 − χeff(b′)−1

χeff(b′′)−1 − χeff(b′′′)−1
(16)

where here P can be either Pγγ or Pgγ . Here we illustrate
the general case of 4 background populations b, b′, b′′, b′′′;
but the expression still gives a non-trivial result for 3 popu-
lations, say if b = b′′. Unlike eq. [10] this expression makes
no assumptions about the width of Wf being small. It does
not depend on the mass power spectrum or its growth, but
depends only on the background redshift distributions and
cosmological parameters of interest, such as the equation
of state and abundance of dark energy.

2.5. The Redshift Tail Systematic

Another systematic effect which is common to both lin-
ear and offset-linear scaling comes from the approxima-
tions of eq.s [4,5] that the foreground populations are com-
pletely in front of the background populations. If this is
not true then the eq. [6] is not exact, but the exact expres-
sion is

Pgγ(ℓ; f, b) = F (ℓ; f) + G(ℓ; f)/χeff(b) + I(ℓ; f, b) (17)

Pγγ(ℓ; f, b) = A(ℓ; f) + B(ℓ; f)/χeff(b) + D(ℓ; f, b)

where the additional terms are given by

I(ℓ; f, b) ≡
3Ωm0H

2
0

2c2

∫
∞

0

dχf

a(χf)
Wf (χf) (18)
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×

∫ χf

0

dχbWb(χb)
χf − χb

χbχf
Pgδ(

ℓ

χf
, χf)

D(ℓ; f, b) ≡

(
3Ωm0H

2
0

2c2

)2 ∫ ∞

0

dχf Wf (χf)

×

∫ χf

0

dχb Wb(χb)

∫ χf

χb

dχ

a(χ)2
χ − χb

χb

χf − χ

χf
Pδδ(

ℓ

χ
, χ) ,

which are both positive (at least so long as Pgδ > 0). The
ratio of power spectrum differences is given by eq. [16]
only to the extent that the additional terms I or D are
negligible. Note that I and D are non-zero only when the
foreground distribution Wf (χf ) and background distribu-
tion Wb(χb) have non-vanishing overlap i.e. some of the
galaxies identified as foreground are actually behind the
galaxies identified as background (χf > χb). This system-
atic effect differs from the foreground width systematic
discussed earlier in that it depends on the tail of the dis-
tributions of redshift uncertainties. This is different from
a systematic caused by the width of the foreground distri-
bution because one can reduce the overlap, and hence the
systematic, by selecting the foreground and background
populations in a way which further separates them in red-
shift. Since the tail of the redshift distribution is likely to
fall off rapidly, increasing the separation can greatly de-
crease the amount of overlap, and hence the size of I and
D, and therefore inaccuracy of eq. [16]. In contrast the
foreground width systematic, which only effect the linear
scaling, is not decreased by further separating the fore-
ground and background populations. We quantify how
large a systematic error this effect will have on our analy-
sis in §3.

3. A FISHER MATRIX ANALYSIS EXPLOITING THE
SOURCE SCALING

Here, we would like to find out the dark energy con-
straints one can in principle obtain from the offset-linear
scaling described in eq. [6], using purely geometric quan-
tities like eq. [16]. Given several redshift bins, one can
imagine there are many ways, or at least many combina-
tions like eq. [16], to obtain dark energy constraints. Given
a set of Pgγ(ℓ; f, b)’s and Pγγ(ℓ; f, b) ’s for a whole range of
f, b, the best way is probably to fit them using the offset-
linear scaling of eq. [6], and marginalize over A,B,F and
G.

To estimate the statistical errors, we will assume the
mass and galaxy density fields are approximated by Gaus-
sian random noise. On large scales, the near Gaussianity
of cosmological inhomogeneities is quite well established.
Even on small scales where the 3-d mass and galaxy dis-
tribution are far from Gaussian, the projected galaxy and
mass surface density (which gives the shear) are much
more Gaussian since they are a projection of many 3-d
structures (Scoccimarro, Zaldarriaga, & Hui 1999, White
& Hu 2000, Cooray & Hu 2001). The expected non-
Gaussianity will lead to a small underestimate of errorbars
but does not lead to a bias.

To predict the uncertainties in cosmological parameters
we use a Fisher matrix calculation. For a zero mean Gaus-
sian distribution the Fisher matrix element for parameters

pα and pβ is given by (e.g. Tegmark 1997)

Fαβ =
1

2
Tr

[
C

−1 ·
∂C

∂pα
· C−1 ·

∂C

∂pβ

]
(19)

where C is the correlation matrix of the data vector d,
i.e. C ≡ 〈dT

d〉. 4 Here the elements of d might con-
sist of local (in angle) shear and galaxy surface density
estimators, however it is more convenient to make linear
combinations which, for each distance bin (foreground or
background), are mode amplitudes for approximate eigen-
modes of the angular Laplace operator, with approximate
eigenvalue −ℓ (ℓ + 1) (for shear we want only the scalar
(E-) eigenmodes). Discrete sampling by galaxies and in-
complete sky coverage will prevent one from constructing
exact eigenmodes in practice, but to estimate the errors it
is a good approximation5 to assume that such modes exist,
that the different angular modes are uncorrelated, and the
number of modes with wavenumber ℓ is (2ℓ+1) fsky where
fsky is the fraction of the sky one has surveyed. Since the
modes are uncorrelated and the modes for the same an-
gular wavenumber, ℓ, should have the same correlations,
the correlation matrix C is block diagonal, and we may
rewrite the Fisher matrix element as

Fαβ = fsky

∑

ℓ

(2ℓ + 1)Fℓ,αβ (20)

where

Fℓ,αβ =
1

2
Tr

[
C

−1
ℓ ·

∂Cℓ

∂pα
· C−1

ℓ ·
∂Cℓ

∂pβ

]
. (21)

If there are nbin redshift bins each Cℓ block can be divided
into nbin × nbin sub-blocks as follows

Cℓ ≡




Cℓ,1,1 · · · Cℓ,1,nbin

...
. . .

...
Cℓ,nbin,1 · · · Cℓ,nbin,nbin


 , (22)

one for each ordered pair of distance bins, (i, j). The sub-
blocks are 2 × 2 matrices given by

Cℓ,i,j ≡

(
Pgg(ℓ; i, j) + δij

1
n̄g

i

Pgγ(ℓ; i, j)

Pgγ(ℓ; j, i) Pγγ(ℓ; i, j) + δij
σ2

γ,i

n̄g

i

)

(23)
where Pgg(ℓ; i, j) is the cross power spectrum at wavenum-
ber ℓ of galaxies in redshift bin i and bin j, n̄g

i is the sur-
face density of galaxies in redshift bin i which tells us the
shot noise, and σ2

γ,i is the intrinsic noise of the shear from
one galaxy in redshift bin i which tells us the shape noise.
Since Pgg(ℓ; i, j) = Pgg(ℓ; j, i) and Pγγ(ℓ; i, j) = Pγγ(ℓ; i, j)
we see that Cℓ,i,j = C

T
ℓ,j,i and that Cℓ is symmetric. If

the redshift bins are reasonably large, it will be a good
4BJ03 also performed a Fisher matrix analysis. Their starting

point was different from ours, however (in addition to other differ-
ences discussed in Appendix A). BJ03 started from a likelihood that
treated the power spectra themselves as data which are Gaussian
distributed.

5This is true when most of the Fisher information comes from
angular scales much smaller than the survey size and much greater
than the typical inter-galaxy separation.
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approximation to ignore galaxy correlations between bins,
i.e. we assume Pgg(ℓ; i, j) = δijPgg(ℓ; i).

We suppose that the galaxies in each population have
measured photometric redshifts, zp which estimate the
true redshift. We assume that the distribution of zp from
all galaxies in all bins is

dNp(zp)

dzp
∝ z2

p e−(
zp

1.0 )
1.5

. (24)

We divide this total population into nbin top-hat bins
in zp-space, such that bin i contains all galaxies with
(i − 1)∆zp ≤ zp < i ∆zp. We suppose the photometric
redshifts are unbiased estimators of the true redshift with
errors distributed like a Gaussian with variance σ2

z so that
the distribution of true redshifts in bin i is

dNi(z)

dz
∝

∫ i ∆zp

(i−1) ∆zp

dzp
dNp(zp)

dzp
e
−

1
2

(
z−zp

σz

)2
(25)

which then is related to Wi(χ) through eq. [1] and from
that we can compute, for a given set of cosmological pa-
rameters, the effective distance to each bin, χeff(i), from
eq [7].

Note that we have not yet defined foreground and back-
ground bins or exploited offset-linear scaling. To do so
we define foreground/background pairs by the requirement
that bin j is a background bin to bin i if j ≥ i + ∆bin.
If b = j is a background bin to foreground bin f = i
then Pgγ(ℓ; f, b) and Pγγ(ℓ; f, b) are given by eq. 6 while
Pgγ(ℓ; b, f) = 0 and Pγγ(ℓ; b, f) = Pγγ(ℓ; f, b). One mini-
mally requires that ∆bin = 1, however in this case one is
subject to systematics by the redshift tail to the extent
that the redshift distributions between adjacent bins over-
lap. Increasing ∆bin decreases any systematic effect from
redshift tails, however it also leads to larger statistical er-
rors because more information is thrown away. We will
discuss below the choice of ∆bin and redshift binning.

The correlation matrix depends on several functions
having to do with the power spectrum: there are the
foreground functions A(ℓ; f), B(ℓ; f), F (ℓ, f), and G(ℓ, f);
and then there are the lensing power spectra Pgγ(ℓ; i, j)
and Pγγ(ℓ; i, j) where neither {i, j} nor {j, i} forms a
foreground-background pair (as defined above via ∆bin); fi-
nally there are the galaxy angular power spectra Pgg(ℓ; i, j).
These are functions we are not interested in because we are
only interested in obtaining constraints on dark energy
properties which are independent of the values of these
functions. So we assume their values are not known a pri-
ori, and for each ℓ we take their values to be unknown
nuisance parameters, i.e. each corresponding to one com-
ponent of pα. So the number of unknown parameters will
be very large, but since dependence on each of these unin-
teresting parameters is confined to a single block, Cℓ, the
computation of the Fisher matrix remains tractable.

In addition to the nuisance parameters the correlation
matrix depends on the background bin distances: χeff(b)
(eq. [7]). These will depend on interesting cosmological
parameters through the function χ(z) and eq. [1]. The
cosmological parameters we are actually interested in are:
w the equation of state of dark energy, w′ ≡ dw/dz, and
Ωde the dark energy density today in unit of the critical
density. We assume a flat universe here, so the matter
density is given by Ωm0 = 1 − Ωde.

To remove the nuisance parameters we can marginalize
over their values. This can be done by inverting the full
Fisher matrix, Fαβ , and then restricting the inverse to the
interesting cosmological parameters, let us denote them by
α̃, β̃:6

Ẽα̃β̃ ≡ (F−1)α̃β̃ (26)

According to the Cramer-Rao inequality the minimum
possible error ellipses in parameter space (for unbiased es-
timators) have principal axes in the directions of the eigen-

vectors of Ẽα̃β̃ with size given by the square root of the

corresponding eigenvalues of Ẽα̃β̃. Maximum likelihood

parameter estimators (MLEs) will approach this accuracy
where the errorbars are small enough. For the problem at
hand we expect these minimum errors to close to what can
be obtained in practice.

To obtain prediction for how accurately one can con-
strain cosmological parameters using offset-linear scaling,
we take fsky = 0.1, (i.e. a 4000 (◦)2 survey), σ2

γ,i = 0.32/2

(shape noise), and
∑nbin

i=1 n̄g
i = 100/(′)2. For the fidu-

cial cosmological and structure formation model, we use
w = −1, Ωde = 0.7, a scale invariant primordial mass
power spectrum with a linear amplitude of σ8 = 0.9, and
for the galaxy and galaxy-mass power spectra, we employ
the halo model (Sheth & Jain 1997, Ma & Fry 2000, Sel-
jak 2000, Scoccimarro et al. , Guzik and Seljak 2001).
To distribute galaxies inside halos, we use the occupation
function given by Kratsov et al. (2003), with a galaxy
(subhalo) masscut at each redshift that matches the red-
shift distribution given in eq. [24] with a total integrated
number density of

∑nbin

i=1 n̄g
i = 100/(′)2. We have exper-

imented with using only the more massive halos as fore-
ground following JT03, but found it did not lead to an
improvement in statistical errors.

Carrying out the Fisher matrix calculation as outlined
above we obtain the dark energy constraints as shown in
Fig. 1 and Fig. 2 which show, respectively the constraints
on Ωde and w when w′ = 0, and the constraints on w and
w′ when Ωde is assumed to be known to 3%. The symbol
w′ denotes dw/dz. A common alternative parametriza-
tion of evolution of w has wa = 2w′ at z = 1 (Linder
2002). The solid, dashed and dotted contours give 1 σ
errors that correspond to a photometric redshift accuracy
of σz = 0.01, 0.02 and 0.05 respectively. For each pho-
tometric redshift accuracy, we choose a redshift binning
that keeps the redshift tail systematic error (§2.5) at a sub-
percent level while minimizing the statistical error. (Keep-
ing the systematic error on dark energy parameters at a
sub-percent level is probably more stringent than is neces-
sary given the size of the statistical error as it turns out.)
For a photometric redshift error of σz = 0.05, we choose
(∆zp, nbin, ∆bin) = (0.15, 20, 2); for σz = 0.02, we choose
(0.1, 30, 2), and for σz = 0.01, we consider (0.15, 20, 1).
The values of σz considered should span a reasonable range
of what can be achieved with photometric redshifts. The
redshift bins stretch out to z ∼ 3 which encompasses the
redshift range of most normal galaxies. Sampling photo-

6In order for Fαβ to be invertible we require that nbin ≥ ∆bin +3
otherwise there are never the 3 background bins required to construct
the ratio of power spectrum differences, eq. [16], so that one can make
use of the offset-linear scaling.



7

Fig. 1.— Purely geometrical weak-lensing constraints on
w and Ωde, making use of the offset-linear scaling of eq. [6],
for a survey covering 10% of the sky, and median red-
shift ∼ 1 (eq. [24]). The solid, dashed and dotted (1
σ) contours correspond to a photometric redshift error of
σz = 0.01, 0.02 and 0.05 respectively. The size of σz is
relevant only because the redshift bins are chosen to keep
systematic error below 1%, and the statistical error is af-
fected by the redshift binning (see text). The equation of
state w is assumed constant. No prior is placed on Ωde or
w. The fiducial model has w = −1 and Ωde = 0.7.

metric redshift space more finely by decreasing ∆zp while
increasing nbin accordingly gives negligible improvement
in errorbars mainly because of the increased importance of
shot-noise when the bin size is made small (see Hu 1999).

Note that because we marginalize over all parameters
that are determined by the mass, galaxy and galaxy-mass
power spectra, it is sensible for us to use information from
all scales (from the fundamental mode to ℓ ∼ 105)– i.e.
there is no need to stay away from nonlinear scales because
of worries about how well one can predict the mass and
galaxy power spectra. Of course, at sufficiently high ℓ’s,
shape-noise dominates and not much information is gained
from the very high ℓ modes.

Fig.s 1 & 2 show that our geometrical method employing
offset-linear scaling yields weaker dark energy constraints
than conventional weak lensing methods which make more
assumptions about the structure formation model (w gen-
erally constrained at the few percent level for a comparable
survey as above; see e.g. Hu 2002, Abazajian & Dodelson
2003). This is of course not surprising, since the offset-
linear scaling method throws away non-geometrical infor-
mation that is utilized in conventional methods. However,
the geometrical constraints are still sufficiently tight to
provide an interesting consistency check: dark energy con-
straints obtained using the two different methods should
agree; disagreement would point to flaws in the structure

Fig. 2.— Purely geometrical weak-lensing constraints on
w and w′, making use of the offset-linear scaling of eq. [6],
for a survey covering 10% of the sky, and median redshift
∼ 1 (eq. [24]). The solid, dashed and dotted contours
have the same meanings as in Fig. 1. A 3% uncertainty
on Ωde is assumed. The fiducial model has w = −1, w′ = 0
and Ωde = 0.7, where w′ ≡ dw/dz. Note that a common
alternative parametrization has wa = 2w′ at z = 1 (see
text).

formation model assumed, or to systematic errors in the
data.

Note that our constraints are a bit weaker than those
obtained by JT03 and BJ03. One might think this could
be due to the fact that we use the offset-linear scaling
rather than the Jain-Taylor linear scaling – the former in-
volves more parameters than the latter (compare eq. [6]
and [9]). On the other hand, the offset-linear scaling allows
the use of both shear-shear and galaxy-shear correlations
while the Jain-Taylor linear scaling can be applied only to
galaxy-shear. So, it is not a priori obvious how our con-
straints should compare with those of JT03 and BJ03. In
Appendix A, we will discuss what happens if we carry out
parameter estimation using the linear scaling. We find
dark energy constraints that are weaker than those ob-
tained by JT03 and BJ03 even in that case. The reasons
are discussed in Appendix A.

4. GEOMETRY AS A CONSISTENCY CHECK

Our procedure, described in the last section, making use
of the offset-linear scaling of eq. [6], is very conservative
i.e. we marginalize over all possible 3-d mass, galaxy, and
galaxy-mass power spectra in order to extract the pure ge-
ometrical information. In truth, we do know a fair amount
about these power spectra, especially from non-lensing ob-
servations. The conventional approach is to assume the
3-d mass power spectrum is well constrained from other
observations (such as the microwave background), and fit
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for dark energy constraints from shear-shear correlations
which depend on dark energy parameters through both ge-
ometrical distances and the growth rate of the mass power
spectrum (which of course implicitly assumes a structure
formation model such as Cold-Dark-Matter; see e.g. Hu
2002, Abazajian & Dodelson 2003). In other words, un-
like the offset-linear scaling method which introduces a
whole set of nuisance parameters in addition to dark en-
ergy parameters, the conventional approach has only the
dark energy parameters as free parameters. A simple al-
ternative, which is less conservative than the offset-linear
scaling method, but allows a consistency test that the con-
ventional approach does not offer, is as follows. Follow the
conventional approach, but split the dark energy param-
eters into two kinds: those that enters the growth factor,
and those that enters the geometrical distances, and fit
for these separately. With such parameter-splitting (Steb-
bins 2003), one does not expect and will not obtain better
constraints compared to the conventional approach where
equivalence between these two sets of parameters is en-
forced. The rationale for parameter-splitting is to check
for consistency: if we could verify that the values of w
for example obtained separately from geometry and from
growth (let us call them w(geometry) and w(growth)) are
consistent with each other, this would increase our con-
fidence in the values obtained; if they disagree, the dis-
crepancy would help isolate what was going wrong, say
systematic errors (e.g. Hoekstra 2003), or contamination
of shear by intrinsic alignments (Lee & Pen 2000, Croft
& Metzler, Heavens, Refregier, & Heymans 2000, Brown
et al., Catelan, Kamionkowski, & Blandford, Mackey,
White & Kamionkowski 2001, Porciani, Dekel, & Hoffman
2002, Vitvitska et al 2002, Maller, Dekel, & Somerville
2002, van den Bosch et al. 2002, Hui & Zhang 2002), or
incorrect assumptions about the mass power spectrum.

As an illustration, in Fig. 3, we show such a consis-
tency test via parameter-splitting. We adopt the same
fiducial model as in Fig. 1, and estimate the constraints
on w(geometry) and w(growth) from both the shear-shear
power spectrum Pγγ and the galaxy-shear power spectrum
Pgγ . To fit the galaxy-shear data, we assume the galax-
ies are linearly biased with respect to the mass, and we
marginalize over an independent galaxy-bias for each red-
shift bin (nbin = 20). We limit ourselves to information
from ℓ < 200, for two reasons: the galaxy-bias is proba-
bly not linear on smaller scales; the nonlinear mass power
spectrum might not be accurately predicted even though
we assume here the linear mass power spectrum is well con-
strained from other observations. Fig 3 shows that such a
consistency test can yield constraints that are interesting
precision-wise. It is also interesting how using both Pγγ

and Pgγ gives significantly better constraints than using
just one of them.

5. DISCUSSION

In this paper, we have introduced a special scaling,
which we call the offset-linear scaling: imagine one has
a foreground population of galaxies from which one forms
either a galaxy-density field or a shear field; when one
cross-correlates this field with the shear measured from
some background population, the cross-correlation signal
(Pgγ or Pγγ) scales with the redshift of the background
population in a way that is specific to lensing. This is

Fig. 3.— Constraints on the dark energy equation of
state w following the conventional approach (i.e. not us-
ing offset-linear scaling; see text), but with the parameter
split into two: one controlling the growth factor and the
other controlling the geometrical distances. The solid (1σ)
contour is from using just the shear-shear power spectrum
Pγγ . The dashed (1 σ) contour is from using both shear-
shear and galaxy-shear power spectra Pgγ . Ωde is fixed at
0.7. The survey size and depth are the same as those of
Fig. 1.

the content of eq. [6]. Such a scaling can be exploited
to extract purely geometrical information from a lensing
survey. Effectively, one can measure angular diameter dis-
tances (or more accurately, combinations thereof; eq. [16])
from a lensing experiment without making any assump-
tions about the shape or growth of the mass/galaxy power
spectrum. The idea is to measure the galaxy-shear and
shear-shear power spectra, Pgγ and Pγγ for a variety of
foreground and background redshift bins. Given a suffi-
cient number of bins, one can fit for all the quantities A,
B, F , G and χeff in eq. [6]. One can then obtain dark
energy constraints from χeff alone, which is a purely geo-
metrical quantity, essentially an angular diameter distance
weighed in a particular way (eq. [7]).

Such an approach has certain virtues. The obvious one
is that the resulting constraints are free of assumptions
about one’s structure formation model (typically a Cold
Dark Matter model with a nearly scale invariant primor-
dial power spectrum). Because of this, one can also make
use of information on smaller scales than what one would
otherwise feel uncomfortable using, either because of non-
linearity in the case of Pγγ , or because of galaxy-biasing
in the case of Pgγ .

The level of constraints from this method employing the
offset-linear scaling is shown in Fig. 1 and Fig. 2. The
constraints are weaker than conventional methods such
as lensing tomography (Hu 2002, Abazajian & Dodelson
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2003). This is not surprising since the offset-linear scal-
ing method isolates and uses only the geometrical infor-
mation, whereas conventional methods make use of infor-
mation from both growth and geometry and assumes the
mass power spectrum is well constrained from other meth-
ods. Nonetheless, the constraints are sufficiently interest-
ing to make our geometrical method a useful consistency
check on assumptions behind conventional methods (e.g.
Cold Dark Matter structure formation model). Compar-
ing against JT03 and BJ03, who used a similar geometrical
approach as here but a different scaling (we call the lin-
ear scaling; eq. [9]), it appears our constraints are weaker
than theirs. We believe the reason is largely because the
statistical errors have been underestimated by JT03 and
BJ03. This is discussed in detail in Appendix A.

A useful feature of the offset-linear scaling is that it is
not as demanding on the photometric redshift accuracy as
the linear scaling (see §2.3, 2.5). Another useful feature:
the offset-linear scaling can be applied to both shear-shear
and galaxy-shear correlations, whereas the linear scaling
can be applied only to the latter (see §2.2).

In §4, we introduce the idea of parameter splitting. In
fitting for dark energy parameters to the observed lens-
ing power spectra (as done in the conventional approach),
one can artificially split them up into those that control
the growth factor, and those that control the geometrical
distances. Consistency between the two sets would be a
good check for the presence of systematic errors, intrinsic
alignment or incorrect assumptions about the nature of
the mass fluctuations. This consistency test is less conser-
vative than the one using the offset-linear scaling.

In a sense, the techniques outlined in §2 and §4 repre-
sent two extremes of a whole spectrum of ways to separate
geometrical information from growth information: from
making no assumptions about the mass (and galaxy-mass)
power spectrum to assuming that it is known to high pre-
cision. There are likely techniques that are intermediate
in this spectrum that might also prove useful.

We are grateful to Gary Bernstein, Bhuvnesh Jain, and
especially Wayne Hu for useful discussions. Support for
this work is provided in part by the DOE and its Outstand-
ing Junior Investigator Program, by NASA grant NAG5-
10842 and NSF grant AST-0098437. LH is grateful to the
organizers of the superstring cosmology program at the
KITP, where part of this work was done.

REFERENCES

Abazajian, K. & Dodelson, S. 2003, PRL, 91, 041301
Bacon, D.J., Refregier, A.R. & Ellis, R.S. 2000, MNRAS, 318, 625
Bartelmann, M. & Schneider, P. 2001, Phys. Rep., 340, 291
Bernstein, G., Jain, B. 2003, ApJ, in press, astro-ph 0309332 [BJ03]
Benabed, K. & Bernardeau, F. 2001, Phys. Rev. D64, 083501
Benabed, K. & van Waerbeke, L. 2003,
Blandford, R.D., Saust A.B., Brainerd, T.G. & Villumsen, J.V. 1991,

MNRAS, 251, 600
Brainerd, T.G., Blandford, R.D. & Smail, I. 1996, ApJ, 466, 623
Brown, M.L., Taylor, A.N., Hambly, N.C., & Dye, S. 2000, submitted

to MNRAS, astro-ph 0009499
Catelan, P., Kamionkowski, M. & Blandford, R.D. 2001, MNRAS,

320, 7
Crittenden, R.G., Natarajan, P., Pen, U, & Theuns, T. 2001, ApJ,

559, 552
Croft, R.A.C. & Metzler, C.A. 2000, ApJ, 545, 561

Cooray, A. & Hu, W. 2001, ApJ, 554, 56
Fischer, P. et al. 2000, AJ, 120, 1198
Guzik, J., Seljak, U. 2001, MNRAS, 321, 439
Heavens, A., Refregier, A., & Heymans, C. 2000, MNRAS, 319, 649
Hoekstra, H. 2003, submitted to MNRAS, astro-ph 0306097
Hoekstra, H., Yee, H., & Gladders, M. 2002, ApJ, 577, 595
Hu, W. 1999, ApJL, 522, 21
Hu, W. 2002, Phys. Rev. D66, 3515
Hu, W., Jain, B. 2003, preprint
Hui, L. 1999, ApJL, 519, 9
Hui, L, & Gaztanaga, E. 1999, ApJ, 519, 622
Hui, L. & Zhang, J. 2002, submitted to ApJ, astro-ph 0205512
Huterer, D. 2002, Phys. Rev. D65, 3001
Jain, B. & Seljak, U. 1997, ApJ, 484, 560
Jain, B. & Taylor, A. 2003, submitted to PRL, astro-ph 0306046

[JT03]
Jarvis, M., Bernstein, G.M., Fischer, P., Smith, D., Jain, B.,

Tyson, J.A., Wittman, D. 2003, AJ, 125, 1014
Kaiser, N. 1992, ApJ, 388, 272
Kaiser, N., Wilson, G. & Luppino, G. 2000, astro-ph 0003338
Kravtsov, A. V., Berlind, A. A., Wechsler, R. H., Klypin, A. A.,

Gottloeber, S., Allgood, B., Primack, J. R. 2003, submitted to
ApJ, astro-ph 0308519

Lee, J., & Pen, U. 2000, ApJL, 532, 5
Linder, E. V. 2002, astro-ph 0210217
Ma, C.-P., Fry, J. N. 2000, ApJL, 531, 87
Mackey, J., White, M. & Kamionkowski, M. 2002, MNRAS, 332, 788
Maoli, R., van Waerbeke, L., Mellier, Y., Schneider, P., Jain, B.,

Bernardeau, F., Erhen, T. & Fort, B. 2001, A & A, 368, 766
Maller, A. H., Dekel, A. & Somerville, R. S. 2002, MNRAS, 329, 423
McKay, T. et al. 2001, submitted to ApJ, astro-ph 0108013
Miralda-Escude, J. 1991, ApJ, 380, 1
Munshi, D., Wang, Y. 2003, ApJ, 583, 566
Pen, U.-L., Lu, T., van Waerbeke, L., Mellier, Y. 2003, submitted to

MNRAS, astro-ph 0304512
Porciani, C., Dekel, A. & Hoffman, Y. 2002, MNRAS, 332, 325
Refregier, A., Massey, R., Rhodes, J., Ellis, R., Albert, J., Bacon, D.,

Bernstein, G., McKay, T., Perlmutter, S. 2003, submitted to ApJ,
astro-ph 0304419

Rhodes, J., Refregier, A. & Groth, E. J. 2001, ApJL, 552, 85
Soccimarro, R., Sheth, R., Hui, L., Jain, B. 2001, ApJ, 546, 20
Scoccimarro, R., Zaldarriaga, M., Hui, L. 1999, ApJ, 527, 1
Seljak, U. 2000, MNRAS, 318, 203
Sheldon, E., Johnston, D. E., Frieman, J. A., Scranton, R., McKay,

T. A., Connolly, A. J., Budavari, T., Zehavi, I., Bahcall, N.,
Brinkmann, J., Fukugita, M. 2003, submitted to AJ, astro-ph
0312036

Sheth, R. K., Jain, B. 1997, MNRAS, 285, 231
Song, Y.-S., Knox, L. 2003, submitted to PRD, astro-ph 0312175
Stebbins, A. 1996, astro-ph/9609149
Stebbins, A. 2003, in preparation
Szapudi, I., Szalay, A. 1998, ApJL, 494, 41
Takada, M., Jain, B. 2003, submitted to MNRAS, astro-ph 0310125
Takada, M., White, M. 2003, submitted to ApJL, astro-ph 0311104
Tegmark, M. 1997, Phys. Rev. D55, 5895
van den Bosch, F.C., Abel, T., Croft, R.A.C., Hernquist, L. &

White, S.D.M. 2002, ApJ, 576, 21
van Waerbeke, L., Mellier, Y., Erben, T. et al. 2000, A& A, 358, 30
van Waerbeke, L., Takashi, H., Scoccimarro, R., Colombi, S.,

Bernardeau, F. 2001, MNRAS, 322, 918
Vitvitska, M. et al. 2002, ApJ, 581, 799
White, M. & Hu, W. 2000, ApJ, 537, 1
Wittman, D.M., Tyson, J.A., Kirkman, D., Dell’Antonio, I. &

Bernstein, G. 2000, Nature, 405, 143

APPENDIX A – COMPARISON WITH JT03

Our aim in this Appendix is to discuss our differences
from Jain & Taylor (2003) [JT03] and to a lesser extent
Bernstein & Jain (2003) [BJ03].

We all share the common goal of isolating geometrical
constraints on dark energy from lensing data. JT03/BJ03
focused on the use of the linear scaling (eq. [9]) while we fo-
cus on the offset-linear scaling (eq. [6]). The linear scaling
introduces fewer nuisance parameters but can only be ap-
plied to galaxy-shear, not shear-shear, correlation data. It
is therefore not a priori obvious whose constraints should
be stronger. The most direct comparison can be made
between the solid contour of our Fig. 1 and the smallest
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contour in Fig. 1 of JT037. Our constraints appear to be
weaker by about a factor of 3 compared to JT03. What
is puzzling is that even when we adopt exactly the JT03
linear scaling, and redo our calculation, the constraints are
still weaker than those of JT03 by a factor of at least 3
or more. (The discrepancy depends on exactly how the
JT03 scaling is implemented, particularly on the choice of
redshift bins; the choice of bins in JT03 seems to lead to
statistical errors larger than factor of 3, see below). This
translates into at least an order of magnitude difference in
the variance. This is not a small discrepancy, particularly
when we use exactly the JT03 method. In this Appendix,
we will focus on this discrepancy with JT03, but will also
briefly comment on the treatment of BJ03 (who obtained
similar constraints as JT03).

We believe the statistical error quoted in JT03 have been
underestimated. There appears to be several different rea-
sons, the first two of which were pointed out to us by
Wayne Hu (see Hu & Jain 2003). First, JT03 adopted a
singular isothermal spherical profile for cluster halos that
they considered. More realistic profiles such as NFW pro-
duce a smaller lensing signal. Second, it appears profile
aside, the lensing signal itself is overestimated. Third,
which is the aspect we would like to focus on, we believe
not all sources of statistical errors were taken into account
by JT03. Hu & Jain (2003) also independently reached
the same conclusions.

To recapitulate, JT03 proposed to examine the ratio
of the galaxy-shear correlation at two different redshifts.
For simplicity, we will consider the ratio of the galaxy-
convergence correlation instead, which can of course be
obtained from the galaxy-tangential-shear correlation: 8

Ri = P i,1
gκ /P i,2

gκ (27)

where i specifies some foreground population, and 1 and 2
refers to convergence from 2 different background redshift
bins. We use the symbol Pgκ loosely to refer to either
galaxy-convergence correlation function, or the galaxy-
convergence power spectrum. Which is which should be
clear from the context (actual power spectrum will usually
have argument ℓ). 9

The statistical error on dark energy parameters clearly
comes from the statistical error on Ri, which in turn is
determined by the statistical error of the Pgκ correlations.
Before launching onto a detailed calculation, it is help-
ful to indicate roughly where we disagree with JT03 (and
also BJ03). Think of Pgκ as ∼ 〈δgκ〉. Its variance un-
der Gaussian random approximation (relaxing the Gaus-
sian assumption would only increase the error) should
be 〈δgκδgκ〉 − 〈δgκ〉〈δgκ〉 ∼ 〈κκ〉〈δgδg〉 + 〈δgκ〉〈δgκ〉. As
we will argue, what JT03 appeared to have considered is
only the part of the variance that comes from the prod-
uct of shape-noise in 〈κκ〉, and shot-noise in 〈δgδg〉 i.e.

7The method of JT03 requires high photometric redshift accuracy,
hence the σz = 0.01 contour of our Fig. 1 is the relevant one to
compare against.

8In previous sections of the paper, we have been loosely using the
term shear γ as equivalent to convergence. In the appendix here,
to avoid confusion especially in Appendix B, we explicitly use the
symbol κ when we are discussing convergence.

9JT03 actually considered halo-shear rather than galaxy-shear.
We will continue to use the term galaxy-shear. All our expressions
are equally valid for special classes of foreground ’galaxies’ such as
groups or clusters.

σ2
κ/(n̄Bn̄g), where σ2

κ is the shape-noise of each back-
ground galaxy, n̄B is the number density of background
and n̄g is the number density of foreground galaxies. In
other words, JT03 appeared to have ignored sampling vari-
ance terms. Not only do these terms ignored by JT03 in-
crease the variance of the measured Pgκ (and Ri), they
also introduce correlation in errors between Ri’s measured
from different foreground bins, which was also absent in
JT03.

Let us now derive the errorbar on Ri in detail. The
estimator for Pgκ can be written as

P̂gκ =
∑

αβ

δg
ακβW̃αβ (28)

The picture in mind is to think of the survey being di-
vided into pixels, and δg

α is the galaxy overdensity in pixel
α, while κβ is the convergence in pixel β. The symbol

W̃αβ can stand for many different things. For example,
if one is interested in the real space correlation function
at separation ∆θ, W̃αβ should be equal to zero when the
separation between α and β differs from ∆θ, or else equal
to 1/N , where N is the total number of pairs of pixels at
that separation. If one is interested in the power spectrum
at wavenumber ℓ, W̃αβ = (1/N2

pix) exp(−iℓ · ∆θαβ) where
Npix is the total number of pixels, and AT is the total

survey area. 10 JT03 considered a particular W̃αβ that
corresponds to averaging the galaxy-convergence correla-
tion over some aperture. We will keep W̃αβ general for
now.

One word about the estimator P̂gκ. It might appear
very different from the way one usually thinks of galaxy-
galaxy lensing. The usual approach is to sit on a fore-
ground galaxy, measure the background tangential shear
averaged around a circle, then average over all foreground
galaxies (Brainerd, Blandford & Smail 1996, Fischer et al.
2000, McKay et al. 2001). This is equivalent to measuring∑

αβ(ng
α/n̄g)γt

βW̃αβ where γt is the background tangential
shear, and ng

α is equal to unity if pixel α has a foreground
galaxy or vanishes otherwise, and n̄g is its average over the
survey. It is easy to see that such an estimator on average
is equivalent to

∑
αβ δg

αγt
βW̃αβ , where δg

α = ng
α/n̄g−1. The

only difference between this and the estimator in eq. [28]
is the replacement of γt by κ. This is merely for the sake
of simplifying our following expressions. Finally, note that
using δg in place of ng/n̄g is generally a good idea because
it reduces the variance of the estimator (Szapudi & Szalay
1998).

The estimator for Ri is given by

R̂i = P̂ i,1
gκ /P̂ i,2

gκ (29)

We caution here that the above estimator is unbiased only
to the lowest order in fluctuations, but we will ignore such
complications here (e.g. Hui & Gaztanaga 1999).

10Strictly speaking, one is usually interested in the power spectrum
at a given |ℓ|, and so W̃αβ should involve an average over directions

of ℓ. Note also that the W̃αβ differs from the conventional one by a
factor of AT , but that is fine since we are only interested in fractional
error. Our choice is to enforce

∑
αβ

W̃αβ = 1, which simplifies some

of our expressions below.
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Eq.s [28,29] imply the following expression for the frac-
tional variance of the ratio Ri:

V (i) ≡ 〈(δR̂i)2〉/(Ri)2 = V 1(i) + V 2(i) − 2V 1,2(i) (30)

where V 1 is the fractional variance of P̂ i,1
gκ , V 2 is the corre-

sponding quantity for P̂ i,2
gκ , and V 1,2 is the cross-variance

between them, and they are given by (approximating fluc-
tuations as Gaussian random):

V 1(i) = [

∫
d2ℓ

(2π)2
P i,1

gκ (ℓ)J(ℓ)]−2 × (31)

∫
d2ℓ

(2π)2
|Jℓ|

2

AT
[P i,1

gκ (ℓ)2 + (P i,i
gg (ℓ) +

1

n̄g
i

)(P 1,1
κκ (ℓ) +

σ2
κ

n̄B
1

)]

V 2(i) = [

∫
d2ℓ

(2π)2
P i,2

gκ (ℓ)J(ℓ)]−2 ×

∫
d2ℓ

(2π)2
|Jℓ|

2

AT
[P i,2

gκ (ℓ)2 + (P i,i
gg (ℓ) +

1

n̄g
i

)(P 2,2
κκ (ℓ) +

σ2
κ

n̄B
2

)]

V 1,2(i) = [

∫
d2ℓ

(2π)2
P i,1

gκ (ℓ)J(ℓ)]−1 ×

[

∫
d2ℓ

(2π)2
P i,2

gκ (ℓ)J(ℓ)]−1 ×

∫
d2ℓ

(2π)2
|Jℓ|

2

AT
[P i,1

gκ (ℓ)P i,2
gκ (ℓ) + (P i,i

gg (ℓ) +
1

n̄g
i

)P 1,2
κκ (ℓ)]

Here, P i,1
gκ is the power spectrum between galaxies in

foreground bin i and convergence in the background bin
1 (there are only 2 background bins in JT03), P i,i

gg is the
power spectrum of foreground galaxies with themselves in
bin i, and so on. The symbol σ2

κ represents the variance
in convergence due to the intrinsic noise of each galaxy,
and n̄g

i is the galaxy density in foreground bin i, n̄B
1 is the

density of galaxies in background bin 1, and so on. The
total survey area is AT . The quantity J(ℓ) is the Fourier

transform of the estimator kernel W̃αβ :

J(ℓ) ≡



∑

∆θαβ

W̃αβ



−1
∑

∆θαβ

W̃αβ exp[−iℓ · ∆θαβ ] (32)

Among all the terms for V (i), which correspond to those
considered by JT03? They are the sum of terms in V 1(i)
and V 2(i) that consist of the product of shape-noise and
shot-noise (we will refer to these loosely as shot-noise
terms):

V JT03(i) ≡ (33)

[

∫
d2ℓ

(2π)2
P i,1

gκ (ℓ)J(ℓ)]−2 σ2
κ

AT n̄g
i n̄

B
1

∫
d2ℓ

(2π)2
|J(ℓ)|2

+[

∫
d2ℓ

(2π)2
P i,2

gκ (ℓ)J(ℓ)]−2 σ2
κ

ĀT n̄g
i n̄

B
2

∫
d2ℓ

(2π)2
|J(ℓ)|2

To see that this does correspond to what JT03 consid-
ered, note that JT03 focused on the measurement of
the real-space galaxy-convergence correlation smoothed
within some aperture (of, say, area Ap). This corre-

sponds to a choice of J(ℓ) (or W̃αβ in eq. [28]) such that

(2π)−2
∫

d2ℓ|J(ℓ)|2 ∼ 1/Ap. Therefore, the above expres-
sion reduces to

V JT03(i) =
σ2

κ

AT AP n̄g
i n̄

B
1 [P i,1

gκ (AP )]2
(34)

+
σ2

κ

ĀT AP n̄g
i n̄

B
2 [P i,2

gκ (AP )]2

where we have abused the notation a little bit to denote
the real-space galaxy-convergence correlation smoothed in
an aperture of area AP by P i,1

gκ (AP ). The above can be
compared directly with equation 12 of JT03. The dictio-
nary for translating our symbols to theirs is as follows:
σ2

κ → σ2
ǫ /2, n̄B

1 → n1, n̄B
2 → n2, [P i,1

gκ (AP )]2 → 〈γ〉2ℓ1,

[P i,2
gκ (AP )]2 → 〈γ〉2ℓ2, AT → A, and AP n̄g

i → fℓ. The
last item requires a little explanation. JT03 defined fℓ

to be the fraction of the survey that is covered by the
apertures centered on foreground objects. This is equal
to AP × (n̄g

i AT )/AT , where AT is the total survey area.
With this, the correspondence with the expression of JT03
is manifest.

The expressions for statistical errors are actually simpler
in Fourier space i.e. suppose instead of measuring the
galaxy- convergence correlation smoothed in some aper-
ture, one measures the galaxy-convergence power spec-
trum at wavenumber ℓ. One can obtain the ratio Ri for
each ℓ, and then combine all these estimates of Ri from
each ℓ in a minimum variance manner. Note that while
this is different from the procedure of JT03, the procedure
here will likely produce smaller errorbars on Ri, since it
makes use of all information contained in the modes in-
stead of focusing on fluctuations at particular scales.

Let us focus on a particular wavenumber (or band) ℓ
for the moment. Eq.s [30,31] reduce to something quite
simple:

Vℓ(i) = [P i,1
gκ (ℓ)]−2(P i,i

gg (ℓ) +
1

n̄g
i

)(P 1,1
κκ (ℓ) +

σ2
κ

n̄B
1

) (35)

+[P i,2
gκ (ℓ)]−2(P i,i

gg (ℓ) +
1

n̄g
i

)(P 2,2
κκ (ℓ) +

σ2
κ

n̄B
2

)

−2[P i,1
gκ (ℓ)]−1[P i,2

gκ (ℓ)]−1(P i,i
gg (ℓ) +

1

n̄g
i

)P 1,2
κκ (ℓ)

where we have used J(ℓ) = |J(ℓ)|2 = (2π)2δ2(ℓ − ℓ′)/AT ,
and we have introduced subscript ℓ to V to emphasize this
is the variance of Ri from Fourier bin ℓ.

The Fourier analog of the approximation made by JT03
would be to retain only the following terms in the variance:

V JT03
ℓ (i) = [P i,1

gκ (ℓ)]−2 1

n̄g
i

σ2
κ

n̄B
1

+ [P i,2
gκ (ℓ)]−2 1

n̄g
i

σ2
κ

n̄B
2

(36)

This misses a number of terms compared to Vℓ(i) in eq.
[35]. Each of the terms ignored by JT03 are of order unity.
They can be thought of as sampling variance terms. While
there is some partial cancellation among them, they do not
cancel exactly and should be retained.

JT03 considered the constraint on dark energy from the
ratio Ri for i ranging over 10 different foreground redshift
bins, ranging from z = 0 to z = 1, each with ∆z = 0.1. In
addition to the diagonal variance considered above, there
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will in general be covariance between R measured from
foreground bin i and foreground bin j, which was not con-
sidered by JT03:

Vℓ(i, j) ≡ 〈δR̂iδR̂j〉/(RiRj) (37)

= δijVℓ(i) + [P i,i1
gκ (ℓ)]−1[P j,j1

gκ (ℓ)]−1P i,j1
gκ P j,i1

gκ

+[P i,i2
gκ (ℓ)]−1[P j,j2

gκ (ℓ)]−1P i,j2
gκ P j,i2

gκ

−[P i,i1
gκ (ℓ)]−1[P j,j2

gκ (ℓ)]−1P i,j2
gκ P j,i1

gκ

−[P i,i2
gκ (ℓ)]−1[P j,j1

gκ (ℓ)]−1P i,j1
gκ P j,i2

gκ

Note the somewhat clumsy notation: instead of specify-
ing the 2 background bins by just 1 and 2, we now have
to specify them by i1 and i2 which refers to the 2 back-
ground bins that correspond to the i-th foreground bin,
and similarly for j1 and j2. The covariance Vℓ(i, j), when
i 6= j, is non-vanishing – the positive and negative terms
present do not exactly cancel each other, and generically
result in something of same order of each of these terms,
with perhaps some mild suppression.

Making use of Vℓ(i, j) one can then work out the dark en-
ergy constraints from the linear scaling of JT03. Adopting
the survey specifications and redshift-binning according to
JT03, we find constraints that are shown in Fig. 4. This
can be compared against the smallest contour in Fig. 1
of JT03. Hu & Jain (2003) independently reached similar
conclusions as in Fig. 4.

In summary, it appears JT03 ignored certain contribu-
tions to the variance (and covariance) of the ratio Ri. They
are primarily sampling variance terms. These are auto-
matically taken into account in our Fisher matrix analysis
in §3, which actually does not require an explicit compu-
tation of all these variance terms. This should be con-
trasted with the Fisher matrix calculation of BJ03: while
we start with the galaxy-density and shear fields as in-
put Gaussian random data and compute constraints on
parameters which enter into the correlation matrix (eq.
[22]), BJ03 started with the quadratic estimates of lensing
power spectra themselves as Gaussian distributed input
data. The latter approach requires explicit computation of
the variance and covariance of these quadratic estimates,
and care should be taken to include all contributions. It
appears some of these contributions were not included in
the analysis of BJ03. We have not, however, performed an
analysis replicating the details of BJ03.

APPENDIX B – NON-FLAT UNIVERSE, SHEAR AND REAL
SPACE CORRELATIONS

Our goal in this Appendix is to state our main results in
this paper for the more general case of a non-flat universe,
for shear instead of convergence, and in real as well as
Fourier space. Some of the expressions have appeared in
the literature. They are given here for completeness.

Let us start with what is most commonly measured in
galaxy-galaxy lensing experiments, and relate it to the
galaxy-convergence power spectrum Pgκ(ℓ) given in eq. [2]
(Kaiser 1992):

ξgγ+(θ) = −

∫
ℓdℓ

2π
Pgκ(ℓ)J2(ℓθ) (38)

where J2 is the second order Bessel function, 11 and
11Jn(y) = 1

2π

∫ π

−π
dη cos[y sinη − nη]

Fig. 4.— Dark energy constraints (1 σ) by adopting the
linear scaling, survey specifications and redshift binning of
JT03. No prior is placed on Ωde or w. The fiducial model
has w = −1 and Ωde = 0.7; w′ is fixed at 0.

ξgγ+(θ) is the cross-correlation between galaxies and tan-
gential shear at separation θ, a quantity that is most com-
monly discussed in galaxy-galaxy lensing measurements.
Alternatively, in a fixed coordinate system where γ1 and
γ2 are the two components of shear, the 2 different galaxy-
shear power spectra Pgγ1(ℓ) and Pgγ2(ℓ) are related to the
galaxy-convergence power spectrum Pgκ by:

Pgγ1(ℓ) = cos(2φℓ)Pgκ(ℓ) , Pgγ2(ℓ) = sin(2φℓ)Pgκ(ℓ) (39)

where φℓ specifies the orientation of the wavevector: ℓ cosφℓ

is the x-component while ℓ sinφℓ is the y-component.
Similarly, the two quantities that are commonly consid-

ered in actual shear-shear correlation measurements are
related to the convergence power spectrum Pκκ(ℓ) of eq. [3]
by (Kaiser 1992):

ξγ+γ+(θ) =
1

2

∫
ℓdℓ

2π
Pκκ(ℓ)[J0(ℓθ) + J4(ℓθ)] (40)

ξγ×γ×(θ) =
1

2

∫
ℓdℓ

2π
Pκκ(ℓ)[J0(ℓθ) − J4(ℓθ)]

where γ+ and γ× are the tangential and ortho-tangential
(or radial) shear defined with respect to separation be-
tween two points of interest. Alternatively, the two differ-
ent shear-shear power spectra in a fixed coordinate system
are related to the convergence power spectrum by

Pγ1γ1(ℓ) = cos2(2φℓ)Pκκ(ℓ) (41)

Pγ2γ2(ℓ) = sin2(2φℓ)Pκκ(ℓ)

The main results of this paper derive from writing
Pgκ(ℓ; f, b) and Pκκ(ℓ; f, b), which are the galaxy-convergence
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and convergence-convergence power spectra between a
foreground bin f and background bin b, in the form of
eq. [17], and noticing some of the terms are small, which
leads to the offset-linear scaling of eq. [6].

Let us first give the expressions for each term in eq. [17]
(and eq. [6]) in the case of a non-flat universe. Then, we
will discuss how similar expressions hold for shear mea-
surements, and in real space.

The non-flat space analogs of eq.s [7,8] are

F (ℓ; f) ≡
3Ωm0H

2
0

2c2

∫
dχ

a
Wf (χ)

1

r(χ)
(42)

cs(χ)Pgδ(
ℓ

r(χ)
)

G(ℓ; f) ≡ −
3Ωm0H

2
0

2c2

∫
dχ

a
Wf (χ)

1

r(χ)

si(χ)Pgδ(
ℓ

r(χ)
)

I(ℓ; f, b) ≡ −
3Ωm0H

2
0

2c2

∫
dχ

a
Wf (χ)

∫
dχ′Wb(χ

′)

r(χ′ − χ)

r(χ′)r(χ)
Pgδ(

ℓ

r(χ)
)Θ(χ − χ′)

1

χeff(b)
≡

∫
dχ′Wb(χ

′)
1

ta(χ′)
(43)

A(ℓ; f) ≡

(
3Ωm0H

2
0

2c2

)2 ∫
dχ′′Wf (χ′′) (44)

∫
dχ

a2

r(χ′′ − χ)

r(χ′′)
cs(χ)Pδδ(

ℓ

r(χ)
)Θ(χ′′ − χ)

B(ℓ; f) ≡ −

(
3Ωm0H

2
0

2c2

)2 ∫
dχ′′Wf (χ′′)

∫
dχ

a2

r(χ′′ − χ)

r(χ′′)
si(χ)Pδδ(

ℓ

r(χ)
)Θ(χ′′ − χ)

D(ℓ; f, b) ≡ −

(
3Ωm0H

2
0

2c2

)2 ∫
dχ′′Wf (χ′′)

∫
dχ′Wb(χ

′)

∫
dχ

a2

r(χ′ − χ)

r(χ′)

r(χ′′ − χ)

r(χ′′)
Pδδ(

ℓ

r(χ)
)

Θ(χ − χ′)Θ(χ′′ − χ)

where r(χ) is the comoving angular diameter distance
which is related to the comoving radial distance χ as fol-
lows: r(χ) = K−1/2 sinK1/2χ, (−K)−1/2 sinh(−K)1/2χ, χ
for a closed, open and flat universe respectively, and
K = −ΩkH2

0/c2, where Ωk is the curvature in unit of the
critical density. The quantities, cs(χ), si(χ), and ta(χ)
are defined as:

cs(χ) = cosK
1
2 χ, si(χ) = sinK

1
2 χ, ta(χ) = tanK

1
2 χ (45)

if K > 0,

cs(χ) = 1, si(χ) = χ, ta(χ) = χ (46)

if K = 0, and

cs(χ) = cosh(−K)
1
2 χ, si(χ) = sinh(−K)

1
2 χ, (47)

ta(χ) = tanh(−K)
1
2 χ

if K < 0.
As before, the offset-linear scaling (eq. [6]) follows from

eq. [17] by noticing that D and I are small provided that
Wi and Wj have little overlap, except that the relevant
quantities A, B, D, F , G and I are defined as above.
With the above expressions, one can in principle fit for Ωk

in addition to the dark energy parameters in carrying out
the exercise of §3.

Lastly, it is trivial to generalize the offset-linear scal-
ing of eq. [6] to galaxy-shear and shear-shear (instead
of galaxy-convergence and convergence-convergence as be-
fore) power spectra by using eq.s [39,41] i.e. simply multi-
ply eq. [6] by appropriate factors of sin(2φℓ) or cos(2φℓ).
Rewriting the scaling in real-space is no less difficult: sim-
ply substitute eq. [6] into the expressions for ξgγ+(θ),
ξγ+γ+ or ξγ×γ× in eq. [38] and (40). One can see that
the scaling continues to hold for real-space analogs of A,
B, etc. In particular, eq. [16] holds for any of these real
space correlation functions e.g.

ξgγ+(θ; f, b) − ξgγ+(θ; f, b′)

ξgγ+(θ; f, b′′) − ξgγ+(θ; f, b′′′)
=

χeff(b)−1 − χeff(b′)−1

χeff(b′′)−1 − χeff(b′′′)−1
(48)

where ξgγ+(θ; f, b) refers to the galaxy-tangential-shear
correlation between foreground redshift bin f and back-
ground redshift bin b.


